Cup of coffee
Research Training Group
Energy, Entropy, and Dissipative Dynamics

No. 2019.05
Existence and characterisation of magnetic energy minimisers on oriented, compact Riemannian 3-manifolds with boundary in arbitrary helicity classes
W. Gerner
Subject: Beltrami fields, helicity, constrained minimisation problems, magnetohydrodynamics
No. 2019.04
Optimal $L^1$-type relaxation rates for the Cahn-Hilliard equation on the line
F. Otto, S. Scholtes, and M. G. Westdickenberg
Subject: Energy-energy-dissipation, nonlinear pde, gradient flow, relaxation rates
No. 2019.03
Hyperbolic stochastic Galerkin formulation for the p-system
S. Gerster, M. Herty, and A. Sikstel
Subject: hyperbolic partial differential equations, uncertainty quantification, stochastic Galerkin method, Euler equations, Roe variable transform
No. 2019.02
Relaxation to a planar interface in the Mullins-Sekerka problem
O. Chugreeva, F. Otto, and M. G. Westdickenberg
Subject: Mullins-Sekerka, energy method, relaxation rates, planar profile
No. 2019.01
A variational time discretization for compressible Euler equations
F. Cavalletti, M. Sedjro, and M. Westdickenberg
Subject: Compressible gas dynamics, optimal transport
No. 2018.09
Fluid-structure coupling of a linear elastic model with a compressible flow model with multilevel timestepping
M. Herty, S. Müller, and A. Sikstel
Subject: Fluid-structure interaction, coupling conditions, linear elastic model, compressible flow
No. 2018.08
Compactness and isotopy finiteness for submanifolds with uniformly bounded geometric curvature energies
S. Kolasinski, P. Strzelecki, and H. von der Mosel
Subject: Menger curvature, tangent-point energies, compactness, semicontinuity, isotopy finiteness, topological constraints
No. 2018.07
Metastability of the Cahn-Hilliard equation in one space dimension
S. Scholtes and M. G. Westdickenberg
Subject: Dynamic metastability, gradient flow, nonlinear PDE, energy methods, coarsening rates
No. 2018.06
Geometric curvature energies: facts, trends, and open problems
P. Strzelecki, H. von der Mosel
Subject: Geometric curvature energies, singular integrals, critical points, regularity theory, geometric knot theory, elastic knots, rectifiability
No. 2018.05
Singular Support of Minimizers of the Causal Variational Principle on the Sphere
L. Bäuml, F. Finster, D. Schiefeneder, and H. von der Mosel
Subject: Classical analysis and ODEs, mathematical physics, functional analysis
More Publications