#### Research Training Group

### Energy, Entropy, and Dissipative Dynamics

#### Funded by German Research Foundation (DFG)

## News & Events Mailing List

##### Weekly Seminar

**Entropy Stable Numerical Schemes for Kinetic Equations***Neeraj Sarna (RWTH Aachen University (Germany))*

Thu, 21 Feb 2019 • 10:30-11:30h • Pontdriesch 14-16, Room 008 (SeMath)

##### Weekly Seminar

**TBA***Sabrina Pellegrino (University of Bari (Italy))*

Thu, 04 Apr 2019 • 10:30-11:30h • Pontdriesch 14-16, Room 008 (SeMath)

## Jobs

**Doctoral Positions**

There are currently several *open doctoral positions* in mathematics.

## Projects

Carefully selected research projects will introduce doctoral researchers to relevant and challenging topics at the forefront of current mathematical research.

## Publications

##### No. 2019.01

**A variational time discretization for compressible Euler equations***F. Cavalletti, M. Sedjro, and M. Westdickenberg*

Subject: Compressible gas dynamics, optimal transport

##### No. 2018.03

**One-dimensional granular system with memory effects***C. Perrin and M. Westdickenberg*

Subject: Granular flows, pressureless gas dynamics

##### No. 2018.02

**Symmetric critical knots for O'Hara's energies***A. Gilsbach and H. von der Mosel*

Subject: Knot energy, symmetric criticality, torus knots

##### No. 2018.01

**Optimal L^1-type relaxation rates for the Cahn-Hilliard equation on the line***F. Otto, S. Scholtes, and M. G. Westdickenberg*

Subject: Energy–energy–dissipation, nonlinear pde, gradient flow, relaxation rates

##### No. 2017.02

**The elastic trefoil is the doubly covered circle***H. Gerlach, P. Reiter, and H. von der Mosel*

Subject: Knots, torus knots, bending energy, ropelength, energy minimiers

##### No. 2017.01

**Existence and properties of certain critical points of the Cahn-Hilliard energy***M. Gelantalis, A. Wagner, and M. G. Westdickenberg*

Subject: Variational methods for second-order elliptic equations, homogenization, equations in media with periodic structure

##### No. 2015.01

**Compactness and isotopy finiteness for submanifolds with uniformly bounded geometric curvature energies***S. Kolasinski, P. Strzelecki, and H. von der Mosel*

Subject: Menger curvature, tangent-point energies, compactness, semicontinuity, isotopy finiteness, topological constraints

##### No. 2014.02

**Invariant measure of the stochastic Allen-Cahn equation: the regime of small noise and large system size***F. Otto, H. Weber, and M. G. Westdickenberg*

Subject: Stochastic partial differential equation, large deviations, invariant measure

##### No. 2014.01

**Flows on networks: recent results and perspectives***A. Bressan, S. Čanić, M. Garavello, M. Herty, and B. Piccoli*

Subject: Networks, balance laws, control problems

##### No. 2013.02

**Tangent-point repulsive potentials for a class of non-smooth m-dimensional sets in R^n. Part I: Smoothing and self-avoidance effects***P. Strzelecki and H. von der Mosel*

Subject: Non-smooth sets, repulsive potentials, curvature energies, geometric Sobolev–Morrey theorem

##### No. 2013.01

**Menger curvature as a knot energy***P. Strzelecki and H. von der Mosel*

Subject: Menger curvature, knot energies

##### No. 2011.01

**Integral Menger curvature for surfaces***P. Strzelecki and H. von der Mosel*

Subject: Menger curvature, surface theory, geometric Morrey–Sobolev embedding, uniform Ahlfors regularity, self-avoidance energy

##### No. 2008.02

**Rare events in stochastic partial differential equations on large spatial domains***E. Vanden-Eijnden and M. G. Westdickenberg*

Subject: Rare events, metastability, nucleation, phase transformation, small noise, large deviation theory, spatially extended system, stochastic partial differential equation

##### No. 2008.01

**On 2×2 conservation laws at a junction***R. M. Colombo, M. Herty, and V. Sachers*

Subject: Hyperbolic systems of conservation laws, p-system, St. Venant equations

##### No. 2007.02

**Finite energy solutions to the isentropic Euler equations with geometric effects***P. G. LeFloch and M. Westdickenberg*

Subject: Isentropic Euler equations, spherical symmetry, global existence

##### No. 2007.01

**Existence of Solutions for Supply Chain Models Based on Partial Differential Equations***M. Herty, A. Klar, and B. Piccoli*

Subject: Supply chains, networks, front tracking

##### No. 2006.01

**Gas flow in pipeline networks***M. K. Banda, M. Herty, and A. Klar*

Subject: Networks, Isothermal Euler equation, gas flow